Tuesday, June 16, 2015

The Problems of "Good" Teaching and the Problem of "Excellent" Being the Enemy of Good

This post is about two dual problems.  A significant percentage of faculty or institutions are satisfied with "good" teaching, and a separate and overlapping group of faculty or institutions are paralyzed by perceptions that a high degree of "excellence" is needed to switch to active learning methods, such as IBL.  The purpose of this post is to offer a perspective on the dual problems in an attempt to minimize them and ultimately make change easier.

"Good" teaching comes in many forms, and I'll highlight just one prototypical case.  By "good" teaching I mean an instructor who gives clear lectures, gets good student evaluations, and students get the expected grades.  In 1988, Schoenfeld published an article "When Good Teaching Leads to Bad Results: The Disasters of `Well-Taught' Mathematics Courses," highlighting that beneath the surface things are quite the different than they appear.  Good teaching evals and within-spec grade distributions make things appear like their are going well.  Researchers have revealed since the 1980s that beneath the veneer of success are fundamental problems, such as strong negative beliefs associated to learning math.  These beliefs include statements like
  • Students perceive that the form of the solution is what counts (not the content)
  • All problems can be solved in just a few minutes
  • Students view themselves as passive consumers of mathematics
  • Students separate deductive and constructive geometry (as in they are unrelated)
Further studies show that the problem is in fact more widespread and deeper than what Schoenfeld revealed in his article.  There exists a long list of negative beliefs from the math education literature,  highlighted in a post I wrote previously.  Deep negative beliefs affect how students learn mathematics, and even if they do well on the usual timed-tests, they come away with crippled learning mindsets, which damages their future learning potential.  One can go on and on, looking at pass-fail rates in Calculus, lack of improvement in problem-solving ability, how US students lag international peers, and much of this is traced (at least in part) to how we teach (See Stigler and Hiebert).

One factor in perpetuating "good" teaching is over reliance on student evaluations as a measure for teaching effectiveness.  While student evaluations are somewhat useful, they are a highly limited and possibly misleading for assessing teaching effectiveness.  One reason is that a strategy to get high teaching evaluations is to (a) give easy tests and (b) tell jokes or be friendly and entertaining.  Studies also show there are gender effects (males get better ratings), and how the instructor looks (attractiveness) has an influence on student evaluations.  Students are also not able to measure items such as the precision and quality of using scientifically-validated pedagogies, and in fact students may be more interested in keeping things the way they are, even if they would learn more and better with an active-learning classroom.
“I do not think I would get on very well in my ideal school because I am too used to being told what to do.”  -- Frances, fifteen, (Claxton)
In addition to the problems of student evaluations as primary measure of teaching effectiveness, there are other facets of the math teaching culture that inhibit change.  Teaching is a cultural activity. Students, parents, teachers, and administrators have default expectations for what "good" teaching is. These expectations are not tied directly to deeper learning outcomes, and so there are forces that make it more difficult to change the status quo.

If all the signals are "good," then why change?  Consequently, societal, systemic, and cultural forces help to keep "good" teaching in place.  

Excellent Being the Enemy of Good
A dual issue is a particular notion of excellence.  Let me explain.  Even if one does the required homework and decides to try IBL, a factor that holds back instructors is the notion that one needs to be "excellent" at IBL before it can make a difference.  Another form of this is that a department chair may want an "excellent proof" that IBL.  I'm not saying we shouldn't strive for excellence.  Nothing could be further from the truth.  The point is that waiting until things are perfect and pristine is a mistake in terms of implementation timing.

Contributing to the problem of excellence being the enemy of good is the tacit assumption that there exists a safe neutral choice.  It goes like this.  If I am a "good" math teacher and my students like me, then I am taking a risk to try IBL.  Hence, I had better be excellent at IBL to make the switch.  

The reality is that there isn't really a safe, neutral choice in the current education climate.  The recent work by Freeman, et al published work in the Proceedings of the National Academy of Sciences, essentially states that if active learning vs. lecture was a medical study, then with the preponderance of evidence available today it would be unethical to continue using the lecture method.  

Further, studies like the Force Concept Inventory sheds light on the excellence issue.  In Physics education, we have learned the active learning group of instructors outperformed the traditional instructors, AND it did not truly matter if the active learning instructor was a novice and the traditional instructor was the award winning, inspirational figure.  In terms of learning outcomes on conceptual understanding teaching methodology won out as the most important factor.  You don't have to be an expert active-learning teacher to get solid outcomes.  All one needs is to be proficient enough at using specific active-learning strategies.  Some of the active learning strategies employed in Force Concept Inventory study are relatively easy to implement, such as peer instruction (Think-Pair-Share).  It's doable!

In summary, "good" teaching has an effect of lulling one into a false sense of success and security, which ultimately slows progress.  Further, waiting for things to be excellent also slows progress and makes change seem larger than it actually is.  Our teaching system and teaching culture unfortunately support these things (inadvertently), making it more difficult for change.  On a more basic level, just having productive discussions about these issues are difficult, because of the fact that many of the assumptions and cultural norms about teaching are embedded deep within us.  "It's the way it has been for long, long time. That's all I know..." is a commonly sung refrain.

Rather than basing our profession on labels, like "good" or "excellent," a more productive approach is to focus on implementing research-validated teaching practices (i.e. apply scientific knowledge).  Instructors can learn to use one or more specific active-learning methods (think-pair-share!) and start on the path towards deeper, more meaningful student engagement.  Workshops, IBL-specific conferences, mentoring programs, and regional or national math conferences offer opportunities for faculty to engage in discussions and find solutions for their particular situations.

Getting started with implementing active learning is a first step towards transformative experiences.  I encourage instructors to set their aim high in the long run, because full IBL courses have the potential to be transformative.  IBL instructors have repeatedly reported over decades stories of students, who initially did not see themselves as successful math students, go on to graduate school or careers that they did not think they could do.

Alfred discusses (~7:55 into the video) how he was about to drop out of college, but then buckled down and decided to go to graduate school in mathematics.

It's worth the effort!